Testování nanomateriálů z hlediska současného vědeckého poznání a praxe

Pavel Rossner, PhD. pavel.rossner@iem.cas.cz

http://iem.cas.cz/en/research/departments/department-of-nanotoxicology-and-molecularepidemiology/

Nanotoxikologie

- studies the interaction of nanomaterials with biological systems, and the consequences of these interactions

takes into account specific physicochemical properties of NP

Zdroje nanočástic

Table 1. UFPs/NPs (< 100 nm), natural and anthropogenic sources.</th>

	Anthropogenic		
Natural	Unintentional	Intentional (NPs)	
Gas-to-particle conversions Forest fires	Internal combustion engines Power plants	Controlled size and shape, designed for functionality	
Volcanoes (hot lava)	Incinerators	Metals, semiconductors, metal oxides,	
VIRUSES	Jet engines	carbon, polymers	
bacteria protoctists, mollusks,	welding, etc.)	-shells, -rings, -platelets	
human brain, meteorite (?)	Other fumes	Untreated, coated (nanotechnology	
Ferritin (12.5 nm)	Heated surfaces	applied to many products: cosmetics,	
Microparticles (< 100 nm; activated cells)	Frying, broiling, grilling Electric motors	medical, fabrics, electronics, optics, displays, etc.)	

Vstup nanočástic do lidského organismu

Eckhardt et al., Chem Rev. 2013

Proč jsou nanočástice potenciálně nebezpečné?

Roli hraje velikost

Exponenciální nárůst velikosti povrchu při velikosti pod 100 nm, současně narůstá reaktivita

Oberdorster et al., Environ. Health Perspect., 2005, 113, 823

Struktura lidské buňky

commons.wikimedia.org

Buněčné jádro a DNA

Principy genové exprese

Epigenetická regulace genové exprese

Libertas Academica

Vstup nanočástic do buněk

Nanočástice v hepatocytech

Johnston et al. 2010 TAAP 242(1); 66-78.

Nanočástice a makrofágy

Clift et al. 2008 TAAP 232; 418-427.

Co se s nanočásticemi děje v buňkách?

Oxidační vlastnosti nanočástic

Životní cyklus nanomateriálů

©CEREGE

Nanomateriály v životním prostředí – vliv na člověka

Bruinink et al., Arch. Toxicol., 2015, 89, 659

Fyzikálně-chemické vlastnosti nanočástic a biologické účinky

Potenciální zdravotní dopady působení nanočástic

Depozice částic v dýchacím systému

Oberdorster et al., Environ. Health Perspect., 2005, 113, 823

Vstup nanočástic do mozku

Metodické přístupy v (nano)toxikologii

Model	Parameter	Methods	Results
Molecular interaction	Protein corona	Spectroscopy, microscopy, macroscopy, scattering	
Cellular responses	Gene expression, proteins, metabolites, cellular assays	Omics techniques, plate reader, microscopy	
Tissue/organ changes	Tissue damage, altered function, homeostasis	Histopathology	Prediction of toxicity based on cell response and
Organism responses	Impaired health, disease, death	Phenotypic observations, clinical analysis	pathway of toxicology
Population responses	Impaired health, disease, death	Epidemiological studies	

Fröhlich J Nanobiotechnol (2017) 15:84

Testování biologických účinků nanočástic

In vitro testing: Cytotoxicity

Detection of cells with reduced viability

Metabolic activity of the cells, protein content, proliferation, membrane integrity

In vitro testing: Apoptosis

In early apoptosis stages phosphatidylserine (PS) translocates to outer membrane

Annexin V is a protein with high affinity to PS. Annexin V conjugated with fluorescent compounds is used to detect apoptotic cells

In vitro testing: Oxidative DNA damage

8-oxodeoxyguanosine – the most common oxidized DNA nucleoside; its presence may induce mutations

Detection: ELISA; chromatography

- 2. A-<u>coating</u> with 8-oxoG-BSA
- 3. B-blocking with FCS
- 4. C-<u>incubation</u> with <u>samples</u> and <u>primary</u> anti-8-oxodG antibody
- 5. <u>D-competition</u>
- 6. E- <u>incubation</u> with <u>secondary</u> antibody conjugated with enzymes
- 7. F-<u>incubation</u> with chromogenic substrate and <u>color</u> development

In vitro testing: Lipid peroxidation

15-F_{2t}-isoprostane – formed by ROS attack on arachidonic acid in cellular membranes

In vitro testing: Protein oxidation

Carbonyl groups in proteins

Formed by the ROS attack on side chains of amino acids or protein backbone

Negatively affect protein functions

Associated with a number of diseases

Detection: ELISA

Dalle-Donne et al., Trends Mol Med 9 (2003) 169-176

In vitro testing: Comet assay

Commonly used method for genotoxicity testing

DNA damage is expressed as a percentage of DNA in the comet tail relative to the total DNA content

Comet assay variants: neutral, alkaline

Oxidative DNA damage detection: DNA breaks are formed at the sites of activity of endonuclease (ENDO III) and glykosylase (FPG)

In vitro testing: Micronuclei analysis

Detection of chromosome breaks or losses

Methods of analysis:

manual – cheap, time-consuming automated – analysis of a large number of cells; higher quality of data, faster

OMICS approach in toxicology: toxicogenomics

Genomics – DNA sequencing, genetic profiling, genetic mapping, structural and functional analysis of genome

Transcriptomics – RNA sequencing, expression profiling, transcritpional regulation

Proteomics – protein identification, quantification, post-translational modification

Metabolomics – study metabolite profiles, metabolic intermediates, hormones and other signaling molecules

Advanced genomics methods

In vitro tests – incubation of cells

Spectrophotometer (cytotoxicity...)

Comet assay

Micronuclei analysis

Genomics techniques

Overcoming the limitations: computational modeling?

NOT TESTED

WHY?

increased use of NM

ethical issues

variety of NM (physicochemical properties)

a great number of NM interactions with biological systems

TOO MANY VARIABLES TO BE TESTED IN THE LABORATORY

Laboratory testing may be replaced by mathematical modeling

Ultimate goal of computational modeling: safe-by-design NM

Safe by design

production of NM with properties that minimize negative biological and environmental impact of NM application and use

Limitations of computational modeling

in vitro tests may not cover all possible negative biological impacts

selection of the model system

Occupational exposure to NPs examples

Occupational exposure to (nano)TiO₂

Workers exposed to (nano)TiO₂ pigment during production (36 subjects)

40% of the shift spent in the close vicinity of units emitting NP 60% of the shift in the separate control room

Researchers from the same factory

Controls not employed in the plant (healthcare workers, 45 subjects)

NP measurement:

scanning mobility particle sizer aerodynamic particles sizer

Occupational exposure to (nano)TiO₂: DNA oxidation

Pelclova et al., Occup Environ Med 2016, 73, 110

Occupational exposure to (nano)TiO₂: conclusions

Exposure to (nano)TiO₂ during the production results in elevated oxidative damage to DNA, proteins and lipids

Dose-dependent effect of occupational (nano)TiO₂ exposure was observed

The exposure has possible chronic or subacute effect

Pelclova et al., Occup Environ Med 2016, 73, 110; Nanotoxicology, 2017, 11, 1

Workers exposed to iron oxide aerosol (14 subjects)

exposure for 10 ± 4 years

Controls not employed in the plant, no occupational exposure to dust (14 subjects)

NP measurement:

scanning mobility particle sizer aerodynamic particles sizer

Journal of Breath Research

Pelclova et al., J Breath Res 2016, 10, 1

Biological analyzes in exhaled breath condensate and urine:

oxidative DNA damage: 8-hydroxy-2-deoxyguanosine 8-hydroxyguanosine 5-hydroxymethyl uracil

protein oxidation: o-tyrosine 3-chlorotyrosine 3-nitrotyrosine

lipid peroxidation: malondialdehyde 15-F_{2t}-isoprostane 4-hydroxynonenale...

Pelclova et al., J Breath Res 2016, 10, 1

Exposure to iron oxide pigments during the production induced oxidative damage to DNA, lipids and proteins in exhaled breath condensate

No effects for markers in urine were observed

The exposure does not result in systemic induction of oxidative stress

Pelclova et al., J Breath Res 2016, 10, 1

Workers exposed to nanocomposites during material processing (20 subjects)

exposure for 17.8 ± 10 years

Controls from the same location, not exposed to nanocomposites (21 subjects)

NP measurement: scanning mobility particle sizer aerodynamic particles sizer

Mutagenesis, 2019, 34, 253-263

doi:10.1093/mutage/gez016 Original Manuscript Advance Access publication 24 June 2019

Mutagenesis, 2020, 35, 331–340 doi:10.1093/mutage/geaa016 **Original Manuscript** Advance Access publication 23 July 2020

Original Manuscript

The genotoxic effects in the leukocytes of workers handling nanocomposite materials

Bozena Novotna¹, Daniela Pelclova², Andrea Rossnerova³, Vladimir Zdimal⁴, Jakub Ondracek⁴, Lucie Lischkova², Stepanka Vlckova², Zdenka Fenclova², Pavlina Klusackova², Tana Zavodna³, Jan Topinka³, Martin Komarc², Stepanka Dvorackova⁵ and Pavel Rossner Jr^{1,*,}•

MDPI

Articl **DNA Methylation Profiles in a Group of Workers Occupationally Exposed to Nanoparticles**

Andrea Rossnerova ^{1,†,*}, Katerina Honkova ^{1,†}, Daniela Pelclova ², Vladimir Zdimal ³, Jaroslav A. Hubacek⁴, Irena Chvojkova¹, Kristyna Vrbova⁵, Pavel Rossner Jr. ⁵^(D), Jan Topinka¹ Stepanka Vlckova², Zdenka Fenclova², Lucie Lischkova², Pavlina Klusackova², Jaroslav Schwarz³, Jakub Ondracek³, Lucie Ondrackova³, Martin Kostejn³, Jiri Klema⁶ and Stepanka Dvorackova⁷

Rossnerova et al., Mutagenesis 2019, 34, 253; Rossnerova et al., Int. J. Mol. Sci. 2020, 21, 2420; Novotna et al., Mutagenesis 2020, 36,

Original Manuscript

The repeated cytogenetic analysis of subjects occupationally exposed to nanoparticles: a pilot study

Andrea Rossnerova^{1*,} Daniela Pelclova², Vladimir Zdimal³, Pavel Rossner Jr.¹, Fatima Elzeinova¹, Kristyna Vrbova¹, Jan Topinka¹, Jaroslav Schwarz³, Jakub Ondracek³, Martin Kostein³, Martin Komarc⁴, Stepanka Vickova², Zdenka Fenclova² and Stepanka Dvorackova^{5,6,7}

nternational Journal of Molecular Sciences

331

Biological analyzes in blood samples:

1. Micronuclei detection (losses and breaks)

centromere positive

centromere negative

Rossnerova et al., Mutagenesis 2019, 34, 253331

Biological analyzes in blood samples:

2. DNA breaks and oxidative damage

Figure 1. DNA damage in the leukocytes of controls and workers long-term exposed to nanoparticles: comparison of pre-shift values obtained from subjects examined repeatedly in the years 2016 and 2017. Number of exposed workers – 14; number of controls – 11; * $P \le 0.05$; *** $P \le 0.001$.

Biological analyzes in blood samples:

3. DNA methylation profiles

Results:

Increased MN frequency after short-term, but not long-term exposure

DNA breaks and oxidative damage were increased after NP inhalation, particularly after acute exposure

DNA methylation profiles significantly differed between the exposed and control subjects when long-term exposure was considered

Rossnerova et al., Mutagenesis 2019, 34, 253; Rossnerova et al., Int. J. Mol. Sci. 2020, 21, 2420; Novotna et al., Mutagenesis 2020, 36, 331

The exposure to nanocomposites causes DNA damage and affects DNA methylation profiles

For some parameters, the effect was observed after acute (shortterm), but not chronic (long-term) exposure suggesting adaptation to NP exposure

Rossnerova et al., Mutagenesis 2019, 34, 253; Rossnerova et al., Int. J. Mol. Sci. 2020, 21, 2420; Novotna et al., Mutagenesis 2020, 36, 331

Adaptive response: a clue to (human) adaptation?

Effect of xenobiotics in the organism: Dose-response curves

Kritika konceptu LNT (linear non-threshold dose-response model): Calabrese, https://doi.org/10.1016/j.envres.2021.111025

Take-home message

Be careful but use common sense

NanoEnviCZ

Research infrastructure

Supported by the Ministry of Education, Youth and Sports (2016-2022) (LM2015073)

Partners:

J. Heyrovský Institute of Physical Chemistry AS CR
Palacký University Olomouc
Technical University in Liberec
Jan Evangelista Purkyně University in Ústí nad Labem
Institute of Inorganic Chemistry AS CR
Institute of Experimental Medicine AS CR

http://www.nanoenvicz.cz/en

NanoEnviCZ

The principal aim is to provide infrastructure for external and internal partners (research institutions, industry) to achieve the following goals:

- 1. Development of new NM and technologies applicable in:
 - a. degradation of environmental pollutants
 - b. transformation of solar energy to hydrogen
 - c. production of biosensors
 - d. catalysts for production of next generation fuels and chemical products
- 2. Assessment of (eco)toxicity of NM, construction of predictive models of the effect on NM on the environment and application of the models to design eco-friendly materials

NanoEnviCZ

NanoEnviCZ at the Institute of Experimental Medicine:

Cytotoxicity analyses

Oxidative damage assays

DNA damage (comet aassay, micronuclei analysis)

Gene expression analyses and next-generation sequencing

Contact persons:

Jan Topinka, DSc., jan.topinka@iem.cas.cz Pavel Rossner, Jr., PhD., pavel.rossner@iem.cas.cz